'ซีเซียม-137' วัสดุกัมมันตรังสี สารสุดอันตราย หากโดนควรทำอย่างไร
รู้จัก 'ซีเซียม-137' วัสดุกัมมันตรังสี หลังหายออกจาก โรงไฟฟ้า จ.ปราจีนบุรี สารสุดอันตราย หากโดนสารควรทำอย่างไร
'ซีเซียม-137' หรือ Cs-137 วัสดุกัมมันตรังสี ที่หายออกจาก โรงไฟฟ้า แห่งหนึ่ง ใน อ.ศรีมหาโพธิ จ.ปราจีนบุรี มีลักษณะเป็นแท่งทรงกลม ขนาดเส้นผ่านศูนย์กลาง 5 นิ้ว ติดอยู่ที่ปลายท่อโรงไฟฟ้าแต่ทางบริษัท ไม่ทราบว่า หายไปได้อย่างไร และหายไปตั้งแต่เมื่อใด
ซึ่งผู้แทนบริษัทฯ ได้เข้าแจ้งความกับพนักงานสอบสวน สภ.ศรีมหาโพธิ โดยเกรงว่า จะเป็นอันตรายถ้ามีผู้ไปสัมผัส พร้อมตั้งรางวัลนำจับไว้ 50,000 บาท สำหรับผู้ชี้เบาะแสจนนำไปสู่การติดตามวัสดุกัมมันตรังสี 'ซีเซียม-137' กลับคืนมาได้
'ซีเซียม-137' (Cs-137) เป็น ไอโซโทปกัมมันตรังสี ของธาตุซีเซียม ซึ่งเป็นผลผลิตฟิชชันที่เกิดจากปฏิกิริยานิวเคลียร์ฟิชชัน 'ซีเซียม-137' มีครึ่งชีวิต 30.17 ปี ประมาณ 95% สลายตัวโดยการปลดปล่อยรังสีบีต้าแล้วกลายเป็นแบเรียม-137m (barium-137m) ซึ่งเป็นไอโซโทปกึ่งเสถียร (metastable) หรือ ไอโซเมอร์ของแบเรียม-137 (137mBa, Ba-137m) ส่วนอีก 5% สลายตัวไปเป็นไอโซโทปเสถียรโดยตรง แบเรียม-137m (Ba-137m) สลายตัวให้รังสีแกมมา โดยมีครึ่งชีวิต 2.55 นาที ซีเซียม-137 ปริมาณ 1 กรัม มีกัมมันตภาพรังสี 3.215 เทราเบคเคอเรล (terabecquerel, TBq)
โฟตอนจากไอโซโทปรังสีแบเรียม-137m มีพลังงาน 662 keV สามารถใช้ประโยชน์ในการฉายรังสีอาหาร (food irradiation) ใช้ในด้านรังสีรักษา (radiotherapy) สำหรับผู้ป่วยมะเร็ง มีการใช้ 'ซีเซียม-137' สำหรับการถ่ายภาพด้วยรังสีทางอุตสาหกรรมไม่มากนัก เนื่องจากเป็นวัสดุที่ไวต่อการเกิดปฏิกิริยาเคมี เกลือของซีเซียมละลายน้ำได้ดีทำให้ควบคุมความปลอดภัยได้ยาก จึงมีการใช้โคบอลต์-60 (Cobalt-60) ในงานด้านการถ่ายภาพด้วยรังสีมากกว่า นอกจากจะเป็นโลหะที่ไวต่อปฏิกิริยาน้อยกว่าแล้ว ยังให้รังสีแกมมาพลังงานสูงกว่า การนำมาใช้งาน เราจะพบ 'ซีเซียม-137' ได้ในอุปกรณ์วัดความชื้น เครื่องวัดอัตราการไหลหรืออุปกรณ์ตรวจวัดชนิดอื่นที่ใช้หลักการทำงานคล้ายกัน
การนำมาใช้ประโยชน์
มีการนำ 'ซีเซียม-137' มาใช้ไม่มากนัก ถ้าปริมาณน้อยๆ จะใช้สำหรับปรับเทียบเครื่องมือวัดรังสี ใช้เป็นต้นกำเนิดรังสีแกมมาในการวัดความหนาแน่นของเครื่องมือเจาะสำรวจน้ำมัน ใช้เป้นต้นกำเนิดรังสีในการรักษามะเร็ง รวมทั้งใช้ในเครื่องมือวัดทางอุตสาหกรรม เช่น เครื่องวัดความหนาของวัสดุ เครื่องวัดการไหลของของเหลว
ไอโซโทปกัมมันตรังสีซีเซียมในสิ่งแวดล้อม (Radioactive caesium in the environment)
ในการทดลอง อาวุธนิวเคลียร์ หรือ เกิดอุบัติเหตุทางนิวเคลียร์ จะมีไอโซโทปรังสีซ๊เซียม-134 (caesium-134) และ 'ซีเซียม-137' (caesium-137) ถูกปล่อยออกสู่สิ่งแวดล้อมเล็กน้อย และที่มากที่สุดมาจากอุบัติเหตุที่เชอร์โนบิล ในอุบัติเหตุที่โรงไฟฟ้านิวเคลียร์เชอร์โนบิลเมื่อปี 2005 ซีเซียม-137 เป็นต้นกำเนิดหลักอย่างหนึ่งที่อยู่ในเขตหวงห้ามรอบโรงไฟฟ้า ซึ่งประกอบด้วย ซีเซียม-134 (caesium-134) ไอโอดีน-131 (iodine-131) สตรอนเชียม-90 (strontium-90) และซีเซียม-137 (caesium-137) แพร่ออกมาจากการระเบิดขิงเครื่องปฏิกรณ์ ทำให้เกิดความเสี่ยงต่อสุขภาพในระดับสูง
ในเดือนเมษายนปี 2011 ก็มีการพบไอโซโทปรังสีเหล่านี้ในฝุ่นควัน (plume) ที่รั่วไหลออกมาจากเครื่องปฏิกรณ์ของโรงไฟฟ้า Fukushimaประเทศญี่ปุ่น
การปนเปื้อนของไอโซโทปรังสี 'ซีเซียม-137' ในเยอรมันนีหลังจากเกิดอุบัติเหตุที่เชอร์โนบิล มีค่าเฉลี่ย 2000 - 4000 เบคเคอเรลต่อตารางเมตร (Bq/m2) ซึ่งเทียบเท่ากับมีซีเซียม-137 ปริมาณ 1 มิลลิกรัมต่อตารางกิโลเมตร หรือมีซีเซียม-137 ทั่วทั้งประเทศเยอรมันนี ประมาณ 500 กรัม
'ซีเซียม-137' ต่างจากไอโซโทปรังสีชนิดอื่น และไม่ได้เกิดจากไอโซโทปเสถียร แต่เกิดจากปฏิกิริยาฟิชชันของยูเรเนียม 'ซีเซียม-137' ไม่ได้เกิดขึ้นเองตามธรรมชาติ เราสามารถตรวจวัดซีเซียม-137 ได้จากรังสีแกมมาที่ปลดปล่อยออกมา ทำให้สามารถใช้ระบุได้ว่าวัตถุที่บรรจุอยู่ในภาชนะปิด ถูกผลิตขึ้นก่อนการทดลองระเบิดนิวเคลียร์หรือไม่ ซึ่งวิธีนี้นักวิจัยสามารถตรวจสอบไวน์ที่หายาก
ความเสี่ยงต่อสุขภาพของสารกัมมันตรังสีซีเซียม
ซีเซียม สามารถทำปฏิกิริยากับน้ำและกลายเป็นซีเซียมไฮดรอกไซด์ (caesium hydroxide) ซึ่งเป็นสารประกอบที่ละลายน้ำ ซีเซียมมีคุณสมบัติในทางชีววิทยาคล้ายกับโปแตสเซียม (potassium) และรูบิเดียม (rubidium) เมื่อเข้าไปในร่างกาย ซีเซียมจะกระจายไปทั่วร่างกาย โดยมีความเข้มข้นสูงที่กล้ามเนื้อและกระดูก ซีเซียมมีครึ่งชีวิตทางชีววิทยา (biological half-life) ประมาณ 70 วัน จากการทดลองในสุนัข เมื่อได้รับซีเซียมในครั้งเดียวจำนวน 3800 ไมโครคูรีต่อกิโลกรัม (mCi/kg) (คิดเป็นซีเซียม-137 จำนวน 44 ไมโครกรัมต่อกิโลกรัม) สุนัขนั้นตายลงภายใน 3 สัปดาห์
ถ้าบังเอิญได้รับ 'ซีเซียม-137' เข้าไปในร่างกาย ควรรับประทาน ปรัสเซียนบลู (Prussian blue) ซึ่งจะไปทำปฏิกิริยาเคมีโดยจับกับซีเซียม ทำให้ขับออกจากร่างกายได้เร็วขึ้น
ซีเซียม หากกระจายอยู่ในดิน น้ำ และเข้าสู่วงจรอาหาร อาหารที่ได้รับผลกระทบมากที่สุด ได้แก่ ผัก ผลไม้ นม อาหารทะเล และอาหารที่แปรรูปจากวัตถุดิบทางการเกษตร สารนี้เมื่อเข้าสู่ร่างกายบางส่วนจะถูกขับออกจากร่างกายทางเหงื่อและปัสสาวะ และบางส่วนจะตกค้างและสะสมในกล้ามเนื้อ ตับ ไขกระดูก หากได้รับในปริมาณมากหรือเป็นเวลานานทำให้เกิดความผิดปกติในระดับโครโมโซมหรือพันธุกรรม
การควบคุมดูแล 'ซีเซียม-137' ที่ใช้เป็นต้นกำเนิดรังสีแกมมาที่ไม่รัดกุมพอ อาจจะทำให้เกิดการรั่วไหลของไอโซโทปรังสีและเกิดการเจ็บป่วยจากรังสีได้ กรณีตัวอย่างที่ทราบกันดี ได้แก่ อุบัติเหตุที่ (Goiania accident) ที่มีการทิ้งสารกัมมัตรังสีจากอุปกรณ์ที่ใช้ในการทำรังสีรักษาจากคลินิกในเมือง Goiania ประเทศบราซิล ทำให้คนเก็บขยะนำไปขายให้กับคนที่รับซื้อ เนื่องจากคิดว่าเป็นของแปลก กรณีนี้ทำให้มีผู้ได้รับบาดเจ็บและเสียชีวิตจากการได้รับรังสีจำนวนหลายคน
ซีเซียมที่ใช้เป็นต้นกำเนิดรังสีแกมมา จะถูกเก็บอยู่ในภาชนะโลหะ อาจะถูกทิ้งปะปนไปกับโลหะเก่าและถูกนำไปหลอม ทำให้เกิดโลหะผสมที่มีกัมมันตภาพรังสี ตัวอย่างได้แก่ อุบัติเหตุที่ Acerinox accident ในปี 1988 เมื่อบริษัท Acerinox ซึ่งดำเนินกิจการแปรรูปของเก่า (recycling company ) ของสเปน ได้เกิดอุบัติเหตุโดยทำการหลอมซีเซียม-137 จากต้นกำเนิดรังสีแกมมา
ในปี 2009 บริษัทซีเมนต์ของประเทศจีน ในจังหวัด Shaanxi ได้รื้อโรงงานผลิตซีเมนต์เก่าที่เลิกใช้แล้ว โดยไม่ได้ดำเนินการตามมาตรฐานการปฏิบัติงานกับสารรังสี ทำให้ซีเซียม-137 บางส่วนที่ใช้ในเครื่องมือตรวจวัดซีเมนต์ ถูกส่งไปหลอมรวมไปกับโลหะที่ไม่ใช้แล้ว 8 คันรถที่โรงงานหลอมเหล็ก
ข้อมูล : สมาคมนิวเคลียร์แห่งประเทศไทย / กรมวิทยาศาสตร์การแพทย์